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Abstract
A pair of objects on an inclined plane are connected together by a string. The
upper object is then connected to a fixed post via a spring. The situation is
first analysed as a classroom exercise in using free-body diagrams to solve
Newton’s second law for a system of objects upon which many different
kinds of force are acting (string tension, spring force, gravity, normal force,
and friction). Next, the setup is replicated in the laboratory using rolling carts
with attached force sensors (to measure the string and spring forces) and a
motion detector (to measure the position, velocity and acceleration of the
objects). After characterizing the rolling friction, cart masses, incline angle
and spring constant, the kinematics and dynamics of the system can be
accurately modelled with no free parameters. Representing the data in
different ways, notably plotting quantities as a function of the displacement
of the carts instead of elapsed time, greatly assists in their interpretation. For
example, the acceleration of the carts lies along two straight lines when
plotted in that way, the mechanical energy has a zigzag shape and the
velocity of the carts traces out a set of joining half-ellipses in phase space.

Introduction

In lectures in introductory physics, students are
introduced one by one to a variety of forces,
including gravity, normal force, friction, tension
in a string and spring force. Simple models
for reasoning about and making calculations with
these forces are presented. The importance of free-
body diagrams (FBDs) for linking these forces
to the kinematics describing the motion of an
object is emphasized by instructors, and yet most
students see the construction of such diagrams
as an unnecessary extra burden. Often they
instead tackle problems simply by finding a solved
example in their textbook and making minor

changes to the resulting formulae to adapt it to
their situation. An FBD does not appear to them
to be a useful tool for problem solving because
they can often guess what to plug into the left-
hand side of F = ma when few forces act on an
object. To show the true utility of an FBD, it is
necessary for students to work on exercises where
a rich combination of forces acts simultaneously.
Such a situation is presented in this article.

Considering next the laboratory portion of
the introductory course, students typically perform
experiments that individually treat horizontal
kinematics, inclined planes, oscillatory motion,
Atwood-type setups and at least some aspects
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Conceptual and laboratory exercise to apply Newton’s second law to a system of many forces

of retarding forces (static and sliding friction,
and perhaps simple speed-dependent drag forces)
using motion detectors and force sensors. This
variety of experiments affords the opportunity for
a summative laboratory experience in which all of
these ideas are combined in a single experimental
setup. To maximize its pedagogical benefits,
this capstone laboratory is here integrated with
the conceptual exercise of Newton’s second law
described in the preceding paragraph. It is
particularly satisfying that no free parameters are
needed to model the experimental results. By this
stage of the course, students have built up their
understanding of the concepts to the point that they
can successfully account for all observable effects.
Physics really does work!

At least two other side benefits of the
laboratory exercise described in this article also
accrue to students. First, it is a convincing example
of the power of alternative representations in
understanding data. Used in their conventional
manners, motion detectors and force sensors
respectively measure kinematic quantities and
forces as functions of time. It will turn out
here that it is much more useful to instead plot
them as functions of position. Further insights
can be obtained from phase-space plots and from
energy diagrams. Secondly, the laboratory work
presents a special opportunity to help students
to develop a richer understanding of frictional
effects. In particular, the concept of rolling
friction, important in many real-world devices but
often neglected in the physics curriculum, plays a
critical role here.

The article is organized into two major
sections, geared to an Advanced Placement or
A-level physics course in a secondary school or
introductory college course. The first section is
the core material, while the additional theory and
analysis presented in the second section are mainly
for enrichment and further exploration.

The free-body diagrams and experiment
Two objects are investigated that are simultane-
ously subject to a variety of forces. The goals of
the study are to improve students’ conceptual un-
derstanding of how to solve Newton’s second law
for a reasonably complex situation and to enrich
their physical intuition by then examining a simi-
lar setup in the laboratory.

Figure 1. Sketch of the setup for the classroom
exercise.

Classroom exercise

Begin with the following problem that groups
of 2–3 students should work on together. It is
assumed that the relevant individual forces have
already been discussed previously in the course
and that the students have some experience with
constructing FBDs. In my own classes, I require
that FBDs include arrows (carefully distinguished
from the force arrows) labelled a and v (or the
notations ‘a = 0’ and ‘v = 0’ if appropriate)
and x and y to denote the positive directions of
acceleration, velocity and the coordinate axes for
each object of interest. The known directions
for these four quantities should be used if they
are given or implied in a problem; otherwise,
any reasonable choice can be adopted. As will
be apparent below, omitting these arrows on
an FBD makes it much harder to successfully
‘translate’ the diagram into equations describing
the components of Newton’s second law.

Two blocks are connected by a string and are
sliding on a plane inclined at angle θ relative to the
horizontal, as drawn in figure 1. The coefficient
of kinetic friction between either block and the
plane is μk. The upper block has mass m1 and
is connected to a fixed post by a spring of stiffness
constant k. The lower block has mass m2. The
blocks are released from rest with the spring at
its relaxed length (i.e. the length it has before
attaching the blocks to its lower end). Draw FBDs
of each block at some instant in time when the
spring has stretched a distance d , assuming that
both blocks are in motion at that instant. Then use
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your FBDs to find an expression for the tension
in the string connecting the two blocks at that
instant (expressed in terms of givens and known
constants, possibly including θ , μk, m1, m2, g, k
and d).

The usual idealizations about the forces can
be assumed:

• the string is massless and cannot stretch;
• the spring is massless and obeys Hooke’s

law;
• the frictional force on a block equals μk

multiplied by the normal force of the plane
on the block.

However, rather than reminding students
about these concepts in a pronouncement from the
front of the room, it would be better to let groups
discuss ideas among themselves. The instructor
can circulate around the room, giving help to
groups that want it.

Evidently the blocks are going to oscillate
up and down the incline, and eventually come to
rest somewhere below their starting points. The
FBDs are snapshots of the blocks at some instant
of their motion. Students need to realize that the
details of the FBDs depend on whether the blocks
are moving up or down the plane at the instant
of interest. So after some time of group work,
a class discussion should be held in which the
various relevant forces should be listed (by name)
on the board, together with anything that can be
said about their magnitudes and directions. The
class may eventually wish to agree on a particular
direction for the velocities of the blocks, for the
sake of definiteness. They can then return to their
groups to continue the exercise.

Here is a polished solution. Choose a
coordinate system with x pointing down the
incline parallel to its surface and y pointing
perpendicularly away from the incline. Assuming
that the blocks are sliding down the incline,
figures 2(a) and (b) are FBDs for blocks 2 and
1, respectively. In the y directions, the force
components must balance since the blocks can
only accelerate parallel to the surface of the
incline. Thus

N1 = m1g cos θ ⇒ f1 ≡ μk N1 = μkm1g cos θ

(1a)
and similarly

N2 = m2g cos θ ⇒ f2 ≡ μk N2 = μkm2g cos θ.

(1b)

θ

Figure 2. Both blocks have the same acceleration a 
and speed v and are acted upon by the same tension T 
since they are connected by an ideal string. The same 
coordinate system is chosen for both blocks. The 
normal forces are indicated by N, the frictional forces 
by f and the gravitational forces by mg with 
subscripts 1 and 2 for the two blocks. The spring 
force on block 1 is Fs. It is assumed that v and a 
point down the incline for specificity.
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Noting that the magnitude of the spring force is
given by Fs = kd at the instant of interest, the x-
component of Newton’s second law can be written
for block 1 as

T +m1g sin θ −μkm1g cos θ −kd = m1ax (2a)

and for block 2 as

m2g sin θ − T − μkm2g cos θ = m2ax . (2b)

Note that a must bear the subscript x . Without
the subscript, a denotes the magnitude of the
acceleration vector a and therefore cannot be
negative. With the subscript, ax is the x-
component of a and can have either sign [1]. It is
again worth interrupting the groups to have a class
discussion about the signs of the x-components of
the velocity and acceleration. Downhill sliding of
the blocks means that vx > 0 but not necessarily
that ax > 0. The sign of ax depends on whether
the blocks are speeding up or slowing down as they
progress down the incline. Without getting into all
the details of the stretch of the spring and the role
of friction, it is intuitively clear that the blocks will
be speeding up when they are high up the incline
(e.g. just after release) and slowing down when
they are far down the incline (i.e. about to turn
around and start climbing back up it).

Based on this class discussion of ax , it
should be apparent that there are some subtleties
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involved with it and hence further study of the
acceleration is deferred to the laboratory. The
present classroom exercise only asks students to
find an expression for the tension T when the
spring is stretched by d . The key insight for this
purpose is that equations (2a) and (2b) are two
equations in two unknowns (ax and T ) and thus
can be solved simultaneously by any of several
methods, giving groups the opportunity to exercise
some creativity. One way to do so is to divide the
left-hand side of equation (2a) by m1 and the left-
hand side of equation (2b) by m2 and equate them
to eliminate ax . Solving the result for T then gives

T = m2

m1 + m2
kd. (3)

This final expression for T is simple and concrete.
It might be worthwhile to check it by showing
that it has the correct units and that it reduces to
the expected result for cases such as m1 = 0,
m2 = 0 and m1 = m2. At first sight, it seems
remarkable that equation (3) is independent of θ .
Intuitively one might have expected the tension
to increase with increasing tilt of the track. But
keep two points in mind. First, it is the spring that
ultimately drives the motion: equation (3) shows
that the tension T is directly proportional to the
spring force kd. Second, equation (3) only applies
if θ is larger than the value θmin = tan−1 μs,
because the x-component of the gravitational force
m totg sin θ must exceed the static frictional force
μsm totg cos θ with the blocks (of total mass m tot =
m1 + m2) in their initial position when the spring
is unstretched, or otherwise they will never begin
to move! Thus the tension actually does depend
on θ in the sense that it is zero for θ � θmin (even
for an ideal frictionless system, some initial tilt of
the track is thus required) and it only attains the
value given by equation (3) after the blocks begin
to move and any initial slackness in the string is
removed.

In any case, the real goal of the exercise is
not to obtain equation (3), but to draw the FBDs
and properly use them to write down and work
with Newton’s second law. With that in mind, and
in preparation for the follow-up experiment, it is
more important that groups can confidently draw
figure 2 and write down equations (2a) and (2b)
than that they can simultaneously solve the latter
two equations.

Laboratory preparation: acceleration as a
function of spring stretch

So far, simple expressions for the spring force
Fs = kd and for the string tension T = m2kd/m tot

have been found as a function of the stretch d
of the spring from its relaxed position. Neither
of these forces depends on the direction of the
velocity or acceleration of the blocks, and they can
be straightforwardly measured in the laboratory
using a pair of force sensors and a motion
detector, as described in ‘Laboratory experiment:
setup, characterization of parameters and data
collection’. To add richness to the laboratory
experience, the acceleration of the blocks can also
be determined by the motion detector. Unlike Fs

or T , when the acceleration is plotted versus d the
data points are found to lie along two straight lines
rather than a single one. The theory behind this
result is described here. Instructors who prefer a
‘discovery’ approach in the laboratory may wish
to withhold presenting this theory until after the
measurements have been performed.

Anticipating the result, from now on I will
subscript the acceleration a with ‘down’ or ‘up’,
depending on whether the blocks are sliding down
or up the incline, respectively. Let us start with the
case of downhill sliding, as treated in ‘Classroom
exercise’. The x-component of the acceleration
can be found by adding equations (2a) and (2b)
together to eliminate T . Rearranging then leads to

adown, x = g(sin θ − μk cos θ) − kd/(m1 + m2).

(4)
We see that adown, x is positive only if d is less than
some critical value dc given by setting the right-
hand side of equation (4) to zero,

ddown,c = (m1 + m2)g cos θ

k
(tan θ − μk). (5)

As a technical aside, which is probably worth
mentioning in class only if some student explicitly
asks about it, ddown,c is necessarily positive
because tan θ > μs � μk. It must be the case that
tan θ > μs if the blocks are to begin moving after
they are released from their initial positions, as
mentioned in ‘Classroom exercise’. Furthermore,
the static and kinetic coefficients of friction must
physically satisfy the relation μs � μk. Otherwise
a block placed at rest on an incline with angle θ

given by tan−1 μs < θ < tan−1 μk could neither
slide nor stay at rest!
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It is left as an exercise for the reader (or their
students) to repeat the preceding analysis for the
situation when the blocks slide up the incline. The
FBDs in figure 2 remain the same except that we
must reverse the three arrows for the directions
of v, f1 and f2. Equations (1a) and (1b) remain
unchanged, but in each of equations (2a) and (2b)
one must change the sign in front of μk. Replacing
ax with aup, x , equations (4) and (5) then become

aup, x = g(sin θ + μk cos θ)−kd/(m1 + m2) (6)

and

dup,c = (m1 + m2)g cos θ

k
(tan θ + μk). (7)

Comparing equations (4) and (6), one sees that
the acceleration of the blocks when plotted
against d is predicted to describe two straight
lines with equal (negative) slopes but different
intercepts, one for upward and the other for
downward velocities along the incline. In
‘Laboratory experiment: setup, characterization of
parameters and data collection’, this prediction is
quantitatively verified in the laboratory.

Laboratory experiment: setup, characterization of
parameters and data collection

An attempt was made to reproduce the setup in
figure 1 with standard equipment available in an
introductory physics laboratory. However, even
when relatively smooth blocks and incline were
used, kinetic friction was found to rapidly damp
out the motion and to occasionally cause the
blocks to veer sideways rather than remaining on
a strictly linear trajectory up and down the ramp.
In order to ensure smooth one-dimensional motion
lasting at least a minute (for manageable incline
angles), the blocks were replaced with rolling carts
on a grooved aluminum track. This replacement
means that the sliding friction becomes rolling
friction, and consequently the coefficient of kinetic
friction μk will from now on be replaced by
the coefficient of rolling friction μ. A careful
treatment of the theory of rolling friction [2] shows
that one can model the friction by the same form
used in equations (1), namely f = μN . Therefore
it is not important that students understand the
details of rolling friction to conduct and interpret
the present experiment. In fact, at least two
articles [3, 4] that use the same apparatus as is

used here do not even bother to change the name
or subscript of the frictional force, but continue
to call it kinetic friction with coefficient μk. It
would be preferable to at least alert students to the
idea of rolling friction, but from the point of view
of modelling the experimental results it actually
makes no difference.

The list of equipment for the present
experiment using rolling carts is given in
the accompanying sidebar, for the benefit of
instructors who wish to replicate it in their
schools. For specificity, PASCO model numbers
are given for some of the key apparatus, but similar
equipment from Vernier, PHYWE or other vendors
can also be used.

There are two sets of procedures that students
need to follow to obtain data that can be fully
compared to the theory presented in ‘Laboratory
preparation: acceleration as a function of spring
stretch’ with no free parameters. Most of
these experimental steps are relatively standard
procedures that students should be familiar with
from previous laboratory work in the course. Thus
instructors can choose how detailed to make the
instructions they give to the laboratory groups,
ranging from a detailed recipe to only a general
discussion of the available equipment and goals.

The first set of procedures consists in
quantitatively characterizing the experimental
parameters. In brief, we need the values of θ , μ,
m1, m2, g, k and the equilibrium stretch s of the
spring (beyond its relaxed length) with the carts
attached and at rest. The value of g can either
be assumed to be 9.8 m s−2 (which is what I did
and which is a reasonable value at the latitude
of my school), or a value can be determined
from the standard geodetic formula or from any
independent experimental method of choice.

Attach force sensors to the top of each cart.
Label them ‘1’ and ‘2’ in pencil to keep track of
which is which. Weigh them to determine m1 and
m2. I found m1 = m2 ≡ m = 0.8319 ± 0.0006 kg
since I used identical carts and force sensors. (An
accurate electronic scale was used to measure the
masses. All other quantities reported in this article
were obtained from fits or from visually inspecting
lengths using a metre stick and consequently have
precisions of only 1–3%, with correspondingly
fewer reported significant figures.)

Calibrate the stiffness constant k by attaching
one end of the spring to a vertical hook and freely
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Figure 3. Experimental measurements (red dots) to 
determine the spring constant k from a linear fit (blue 
line).
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hanging known weights Mg from the other end.
Use a metre stick to measure the resulting changes
in length of the spring, �y. Use a sufficient variety
of weights that the stretch of the spring spans the
range of distances that it will undergo on the track
in the actual experiment. I found that hanging from
50 to 500 g masses in 50 g increments worked
well. A graph of the resulting values of Mg versus
�y is presented in figure 3. A linear fit gives a
slope of k = 3.5 ± 0.1 N m−1.

Afterwards, the relaxed spring will probably
be permanently slightly elongated in length, with
adjacent coils no longer touching each other.
Measure that relaxed length si , which in my case
was 12 cm. We will use this value later to
determine s.

Next the coefficient of friction is measured.
Level the track and clip a motion detector to its
end. Choose either of the carts and arrange the
attached force sensor’s electric cable on top of it so
that it is out of the way. Starting from the far end of
the track, give the cart a push towards the motion
detector and collect data on its position. Catch the
cart before it hits the motion detector. Plot the
speed squared v2 versus the position x of the cart.
(One easy way to do this within LoggerPro is to
insert a manually calculated column into the data
table equal to velocity multiplied by velocity.) Fit
a straight line to the portion of the data while the
cart is smoothly in motion. Divide the resulting
slope by 2g to find the value of μ. The theory
behind this procedure is simple. The work–
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kinetic-energy theorem implies that

1
2 mv2 − 1

2 mv2
0 = −μmg�x (8)

where �x is the (positive) distance moved by the
cart starting from its initial position x0 (when it
has speed v0). Thus �x = x0 − x because the
cart is moving towards the motion detector so that
x < x0. Hence a graph of v2 versus x has a
positive slope of 2gμ. The result is independent
of the mass m of the cart and thus should apply
to either cart, assuming that both have the same
construction (and neither has been mistreated), but
it only takes a few extra minutes to roll the other
cart on the track and recollect the data to make sure
that both carts give the same slope.

Figure 4 presents typical data for a low initial
speed of a cart, with the analysis performed
directly in LoggerPro. The slope implies μ =
0.0065 ± 0.0002. The same slope was found
for high initial speeds of the cart (up to at least
0.7 m s−1), proving that the coefficient of rolling
friction is independent of speed, as was implicitly
assumed to be the case in deriving equations (4)
and (6). This result concludes the characterization
of the experimental parameters.

The second set of procedures is to set up the
track and carts as depicted in the photograph in
figure 5, and to collect kinematic and dynamic data
using them. Notice the considerable stretch of the
spring from its relaxed length of si = 12 cm.
With the two carts attached and at rest, the loaded
length of the spring was found to be s f = 90 cm.
Therefore its equilibrium stretch is s ≡ s f − si =
78 ± 1 cm. This number is used to convert values
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Figure 5. Experimental setup for measuring the forces on and kinematics of two rolling carts.

of position x measured by the motion detector at
the bottom of the track into stretches d of the
spring. The angle finder at the top of the track was
used to set the inclination at approximately 10◦
above the horizontal. But a more accurate value
of θ = 9.7◦ ± 0.1◦ was computed from the inverse
tangent of a 37.5 cm rise of the track measured
over a 218.5 cm run using a metre stick.

LoggerPro was set up to collect three graphs
as a function of time: force sensor #1 (measuring
the spring force Fs), force sensor #2 (measuring
the string tension T ), and the motion detector
(measuring position x , velocity v or acceleration a
of the lower end of cart #2). The data collection
was adjusted to measure 40 samples per second
for 15 s. To reduce the noise, the number of
points for derivative and smoothing calculations
was chosen to be 29. The two force sensors were
individually calibrated by hanging 500 g from their

hooks vertically. They were zeroed by placing
them on the track in their correct orientations with
nothing attached to their hooks.

The spring and string were then attached to
the carts. (The electric cables running from the
LabPro interface to the two force sensors were
arranged so that they did not snag on any obstacles
during the oscillations of the carts.) One end of
the spring ran to a horizontal post at the top of
the track and the other end ran to the hook on
force sensor #1. One end of the string was tied
to the back of force sensor #1 and the other end
ran to the hook on force sensor #2. The spring and
string were centred both horizontally and parallel
to the track. The motion detector was clipped onto
the bottom end of the track. It was then zeroed
with the carts at rest. It therefore follows that the
stretch of the spring is equal to d = s − x , with x
oscillating about zero as can be seen in the typical
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Figure 6. Typical data run in LoggerPro indicating graphs of properly calibrated and zeroed values of x, Fs 
and T (from top to bottom) over a 15 s interval.
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data run shown in figure 6. To collect these data,
cart #2 was pulled down the track to within about
15 cm from the motion detector and released. Then
the collect button was clicked. Note from the top
graph in figure 6 that data collection started after
the carts had already climbed most of the way
up the incline, thereby eliminating any distracting
initial features due to the start of motion. Also
the measurements stop while there is still enough
motion of the carts that the data have not become
overly noisy.

The position graph (top pane in figure 6)
has the shape expected for damped sinusoidal
motion. However, instructors should not jump to
the conclusion that the detailed functional form of
this curve is

x(t) = Ae−γ t cos(ω′t + φ), [WRONG!] (9)

where γ ≡ b/2m tot and ω′ = (k/m tot − γ 2)1/2,
appropriate to simple harmonic oscillations of an
object of total mass m tot ≡ m1 + m2 in the
presence of a resistive (drag) force −bv that is
linearly proportional to the speed of motion [5].
In our case, the resistive (rolling frictional) force

is independent of the speed of motion and hence
a different expression for x(t) results [6], as is
discussed in ‘Laboratory results: basic analysis of
the kinematics and dynamics’.

The two forces plotted in the lower panels of
figure 6 are proportional to d and hence to x . Since
the acceleration equals the second derivative of the
position x which is sinusoidal, it follows that the
force graphs are phase shifted by 180◦ relative to
the position graph, i.e., troughs of the top graph
coincide with crests of the other two graphs and
vice versa. A student can quickly change the top
graph within LoggerPro into a plot of acceleration
(rather than position) versus time, and then all
three graphs will have the same phase. The larger
levels of noise seen in the bottom compared to
the middle graph probably originate both from the
expanded vertical scale, noting that equation (3)
predicts that T should be equal to half of Fs since
m1 = m2, and from vibrations in the wheels of
cart #1 to which the string is attached.

The data collection can be repeated with slight
variations in the release of the carts, time delay
until the collect button is clicked, exact pointing
of the motion detector and parameters in the
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software until one is satisfied with the results.
They should then be saved to a file for the analysis
detailed in ‘Laboratory results: basic analysis of
the kinematics and dynamics’. Although that
analysis can be performed within LoggerPro itself,
it is easier to use a graphing software package such
as a spreadsheet.

Laboratory results: basic analysis of the
kinematics and dynamics

So far, the data for the kinematics and forces
have been plotted in LoggerPro as a function of
time. But according to the theory presented in the
previous subsections, it is easier to model the data
if we replot them versus position instead of time.
Since LoggerPro saves six columns of data by
default (corresponding to t , F1 = Fs, F2 = T , x ,
vx and ax ) it is easy to do this within a spreadsheet
such as Excel by selecting the two desired columns
of data. The results are plotted in figures 7(a)–(c)
as the blue dots. The theoretical predictions are
graphed by the solid lines, using the values of the
parameters determined in ‘Laboratory experiment:
setup, characterization of parameters and data
collection’ (allowing them to vary at most within
their specified precisions).

Figure 7(a) plots the spring force. Recalling
that d = s − x , the model predicts that

Fs = k(s − x), (10)

shown as the red line, in excellent agreement with
the data. Panel (b) graphs the tension in the string
connecting the two carts together. Equation (3) can
be rewritten in terms of x as

T = m2k

m1 + m2
(s − x), (11)

which is shown as the red line and again describes
the measurements well. Finally, figure 7(c) plots
the acceleration of the carts as a function of their
position. In striking contrast to the plots in panels
(a) and (b), the acceleration data lie along two
straight lines, rather than only one. These two lines
correspond to motion of the carts up the incline
(corresponding to the red curve) and down the
incline (green curve), with turn-arounds occurring
at extremal values of a (when v = 0). These
two theory curves use the mean values of all of
the measured parameters with no undetermined
coefficients. Since the motion detector is located

Figure 7. (a) Graph of the measured spring force Fs 
versus the position x of cart #2 (blue dots), together 
with a plot of the theoretical prediction (red line).  
(b) Graph of the measured tension T in the string 
versus the position x of cart #2 (blue dots), together 
with a plot of the theoretical prediction (red line).  
(c) Graph of the measured acceleration ax of the carts 
versus the position x of cart #2 (blue dots), together 
with a plot of the theoretical prediction (red and 
green lines).
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at the bottom of the incline, it measures ax > 0
for accelerations directed up the incline, opposite
to the convention of figure 2, and so we reverse the
signs of equations (4) and (6) to obtain

adown, x = −g(sin θ − μ cos θ)

+ k(s − x)/(m1 + m2) (12)

for the green curve, and

aup, x = −g(sin θ + μ cos θ)

+ k(s − x)/(m1 + m2) (13)

for the red curve. The difference in the intercepts
of these two curves is

adown, x − aup, x = 2gμ cos θ (14)

and thus the vertical separation between the two
lines is a sensitive measure of rolling friction. The
excellent fits demonstrate that μ is independent of
θ and v, and that air drag is negligible (as further
discussed in the appendix), at least for the range of
motions investigated here.

Further analysis of the experimental data
So far the spring force Fs, the string tension T
and the acceleration of the blocks ax have been
analysed as a function of position. One could stop
here. However, there are additional interesting
aspects of the data that can be mined from them, if
time and student interest permit. Specifically, three
other representations of the data will be discussed
in this section.

Time dependence of the position

I have already argued that equation (9) is wrong
because it only applies when the drag is linear in
the speed of the object. In the present experiment,
the frictional force is independent of the speed of
the carts. It is not hard to conceptually deduce the
correct expression for the resulting position of the
carts as a function of time [7], although it requires
a bit of care to write it down mathematically [8].

Consider some half-cycle of the motion of
the carts, during which they are rolling down the
incline. Throughout that interval of time (between
successive zero-crossings of the velocity), the
system of two carts (treated as a unit) is subject
to only three force components along the incline:
the spring force Fs, the x-component of the total
weight m totg of the two carts and the sum ftot =
f1 + f2 of the frictional forces on the carts. If

the only force were Fs, then the carts would
oscillate with constant amplitude A about the
relaxed position d = 0 of the spring. Next imagine
turning on gravity without friction. This situation
corresponds to the familiar classroom discussion
of a mass on a horizontal spring that is rotated
until it is hanging vertically. The amplitude A
of oscillation is unchanged; the only effect of
turning on gravity is to shift the centre point of
the oscillations to the new equilibrium position
d = s. Finally, turn on the rolling friction. Since
it is a constant force, its effect on the motion
is analogous to gravity’s effect (which is also a
constant force). Namely the centre point of the
oscillations is again shifted.

We can now mentally trace out the motion of
the system. Start with the carts momentarily at
rest near the top of the incline at d = 0 for the
first half-cycle of the motion; that position is a
‘top turning point.’ The carts will begin to roll
downhill. Eventually they will pass through the
centre point of their downward motion, at which
position the sum of the three force components
along the incline is zero. At that centre point, d =
ddown,c as given by equation (5), with the kinetic
coefficient μk replaced with the rolling coefficient
of friction μ. The difference in position between a
turning point and the equilibrium point defines the
amplitude of motion. Consequently the amplitude
of the carts’ motion for the first half-cycle is A1 =
ddown,c. The carts will continue to roll downhill
until they reach a ‘bottom turning point’ at a total
spring stretch of double the amplitude, d = 2A1 =
2ddown,c.

Next the carts will start rolling back uphill.
But when that happens, the frictional force
reverses direction. Consequently the spring
position at which the three force components sum
to zero changes to d = dup,c given by equation (7).
The amplitude for this second half-cycle is the
difference in position between the bottom turning
point and this new equilibrium point, so that A2 =
2ddown,c − dup,c. The amplitude is thus decreased
by �A ≡ A1 − A2 = 2m totgμ cos θ/k. This
trend continues: the amplitude drops linearly (not
exponentially) by �A every half-cycle until the
carts come to rest at one of the turning points
after a finite number of oscillations [9]. In
further contrast to the viscous (speed-dependent)
damping of equation (9), the angular frequency of
oscillation is always equal to the undamped value
of ω = √

k/m tot.
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Figure 8. Graph of the measured position x of cart 
#2 (blue dots), together with a plot of the theoretical 
prediction (red curve).
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Putting these ideas together, the amplitude in
the nth half-cycle has the constant value

An = A1 − (n − 1)�A = m totg

k
× [sin θ + μ(1 − 2n) cos θ ]. (15)

Assuming one starts the measurement of time t
with the spring at its relaxed length (i.e., d = 0
at t = 0), then n is calculated by dividing t by
T/2 = π/ω and rounding upward to the next
largest integer. The computed position of the carts
as a function of time is given by

x(t) = An cos(ωt). (16)

To compare this prediction to the experimental
data graphed in the top panel of figure 6, we need
to shift the origin of time t horizontally to account
for the fact that t = 0 actually indicates when the
collect button was clicked. The resulting curve
is plotted in red in figure 8 and is in excellent
agreement with the data points in blue.

Phase-space motion of the carts

Now that we have an accurate model for
the position of the carts, we can differentiate
equation (16) with respect to time to get the
velocity of the carts,

vx(t) = −Anω sin(ωt), (17)

where again t is actually calculated as t − t0
with t0 being the time the carts would be at
rest at the unstretched position of the spring (by

Figure 9. Phase-space plot of the velocity of the 
carts versus the position x of cart #2 (blue dots), 
together with the theoretical prediction (red curve).
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extrapolating backward in time). In practice,
t0 is found by shifting the calculated curve in
figure 8 horizontally until it best coincides with the
experimental data. To be accurate, the carts should
be released from rest with the spring relaxed,
to ensure that the amplitude of motion matches
equation (15), rather than being released near
the bottom of the incline as was done in the
experimental procedures described in ‘Laboratory
experiment: setup, characterization of parameters
and data collection’.

A graph of velocity versus position maps
out what is known as a phase-space orbit. Any
given point on such a curve specifies the initial
conditions needed to uniquely determine the
motion of the object thereafter. (In general,
a solution of Newton’s second law requires
specification of x0 and v0.) In the presence of
damping (without a compensating driving force),
the orbit will gradually decay towards a point
of zero velocity at some specific final position,
without ever crossing itself. Consequently, for
real undriven oscillators the phase-space trajectory
is a clockwise inward spiral [10, 11]. Our
experimental and predicted curves are plotted in
figure 9 and show that behaviour, starting from a
point of large positive position and small positive
velocity near the right-hand edge of the figure.

If one has gone to the work of generating
this visually appealing phase-space graph in class,
it may make sense to follow up by discussing
with students the actual mathematical shape of
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this orbit. During any half-cycle (between
successive crossings of the horizontal central axis
in figure 9 when v = 0) the amplitude of
oscillation is a constant, just as it is for an
undamped simple harmonic oscillator. But for an
undamped oscillator, the phase-space trajectories
are ellipses [11]. Consequently, each half-cycle
of the graph in figure 9 is half of an ellipse,
(x/An)

2 + (vx/Anω)2 = 1 from equations (16)
and (17). At the nth turning point, the semi-
major and semi-minor axis lengths of a given
ellipse suddenly decrease by a factor of �A/An

according to equations (16) and (17), but the centre
of the ellipse also shifts horizontally so that there
is no discontinuity in the orbit.

Mechanical energy of the system

It is often instructive in studying oscillators to
consider the kinds of energy involved [12]. In
the present situation, there is kinetic energy of the
two carts, elastic potential energy of the spring,
gravitational potential energy as the carts move
along the incline and thermal energy generated by
rolling friction (as the wheels flex against the track
and the bearings rub against the axles). The elastic
potential energy is equal to

Us = 1
2 kd2 = 1

2 k(s − x)2 (18)

and the gravitational potential energy is

Ug = m totgh (19)

where h is the height of the centre of mass of
the two carts above some reference level. The
simplest choice is to measure up from the table to
the bottom of cart #2, since that is what the motion
sensor monitors, so that h = x sin θ . Substitute
that expression into equation (19) and then replace
m totg sin θ with ks, which must be equal to it
because forces along the incline balance at the
equilibrium position of the loaded spring. Now
add together the two forms of potential energy to
get a total of

U = 1
2 kx2 (20)

after discarding an unimportant constant of 1
2 ks2

(which can be eliminated by shifting the reference
level appropriately). Equation (20) simply states
the familiar fact that the total potential energy of
the system is proportional to the square of the
displacement x from the equilibrium (rather than

Figure 10. Graph of the mechanical energy of the 
system versus the position x of cart #2 (blue dots), 
together with the theoretical prediction (red curve).
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the relaxed) position of the spring. The total
kinetic energy of the system is

K = 1
2 m totv

2 (21)

and adding equations (20) and (21) gives the
total mechanical energy E = K + U .
Experimental values of E can be computed from
the measurements of x and v by the motion sensor
and our characterization of the masses and spring
constant. The result is plotted versus position x as
the blue dots in figure 10 and has a zigzag shape.

Theoretically it is easy to see how this shape
arises. The analogue of equation (8) for the carts
rolling on the incline is

�E = − ftot�x = −μm totg cos θ�x (22)

where ftot is the sum of the rolling frictional
forces on the two carts. Thus we predict that the
energy drops linearly with a slope of magnitude
μm totg cos θ while x reverses direction each half-
period of oscillation, as plotted in red in figure 10.
Note that if we instead plotted E versus time
t , the slope would not be constant and so the
pattern would not simply be a straight line folded
back on itself. Equation (22) compactly represents
the conversion of mechanical energy into thermal
energy by rolling friction.

Conclusions
Looking back over our journey in this article, we
started by drawing free-body diagrams in figure 2
that are rich enough to challenge students who
are used to skipping that step in solving Newton’s
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second law. From figure 2, we found an expression
for the tension that is simple and that turns out
to be the same for both upward and downward
motion of the blocks. It only depends on the
mass ratio m1/m2 and on the spring force kd ,
and is independent of the individual masses of
the blocks, the gravitational field, the angle of the
incline and the coefficient of friction. On second
thought, how can that be? In physics instruction,
we often emphasize that solutions can be tested by
considering limiting cases. But clearly the tension
is not given by equation (3) in the limits that the
angle of the incline becomes zero, the coefficient
of friction becomes very large or in zero gravity.
However, while T itself does not depend on θ , μk

or g, its minimum value does for equation (3) to
hold, in that we assume the blocks will begin to
slide down the incline once released. This example
serves as a caution against blindly taking limiting
cases of a problem solution.

In contrast to the tension, we found that the
acceleration of the blocks is different for uphill
and downhill motions. To test this prediction,
we went into the laboratory and employed carts
instead of blocks, replacing the concept of sliding
friction with rolling friction. Although the detailed
mechanisms of these two kinds of friction are
different, both can be modelled as a coefficient
μ multiplied by the normal force N on the
object. In particular, the rolling coefficient could
be measured by pushing a cart along a level track,
where the resulting slowing by friction is readily
visible to students.

Although we were able to analyse the
position of the carts (and hence their velocity and
acceleration by differentiating) as a function of
time in the form of equations (15) and (16), it
required some care. Furthermore the graph in
figure 8 does not immediately show the difference
between motion up and down the track. For this
purpose, it turned out to be much more revealing
to plot the acceleration against position instead
of time. Two straight lines then resulted, with
the vertical spacing between them being directly
proportional to the coefficient of rolling friction
according to equation (14).

This technique of plotting quantities versus
position also showed itself to be a useful way to
interpret the variation in the spring force, string
tension and mechanical energy of the system
because each of them is then a straight line (folded

over itself in the case of the energy). Another
visually enlightening way to graph the motion of
the system is in phase space. Each half-cycle of
the motion in figure 9 turns out to describe half
of an ellipse, whose major and minor axis lengths
decrease by the same linear increment after each
turning point.

The experiments and concepts presented here
can be extended in other directions. Shaw [13]
has shown that if a hanging weight drives the
rolling of a solid cylinder, the frictional force can
be in either the opposite or the same direction as
the translational motion, depending on whether
the string is wound around a disc whose radius
is a small or a large fraction of the radius of
the cylinder, respectively. Note that the rolling
friction is negligible compared to the driving force
in Shaw’s experiment, and hence the friction
he is measuring is static (in the absence of
slipping) not rolling. Finally, getting closer to
the extramural interests of many students, the free
rolling (coasting) of vehicles (such as bicycles [14]
or cars [15]) can be measured. Air drag becomes
sizeable once the speed gets high enough (above
5–10 m s−1), but at low speeds rolling friction
dominates. The overall resistance depends on tyre
inflation, transmission losses and streamlining of
the shape [16].
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Sidebar: Laboratory equipment list (per
student station)

• two PASCO collision carts (ME-9454);
• two PASCO dual-range force sensors (used

on the ±10 N scale);
• one PASCO 2.2 m track (ME-9779);
• one PASCO motion sensor (used on the

narrow-beam setting);
• one PASCO harmonic spring (ME-9803);
• computer with LabPro interface and

LoggerPro software;
• posts (to support the track and spring);
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• 25 cm thread (to connect the two carts
together);

• hanging weights (to calibrate the spring
constant and force sensors);

• electronic scale (to weigh the carts with their
attached force sensors, m1 and m2);

• angle finder (to adjust the track to θ ≈ 10◦);
• metre stick (to measure the spring stretch and

exact track angle).

Appendix. Air drag on the rolling carts
Here it is shown that air drag can be ignored for
the speeds of this experiment. The rms speed of
the carts during the 15 s interval in figure 6 is
calculated from the data to be v̄ = 0.40 m s−1. The
cross section of a cart with its attached force sensor
is roughly square with an area of approximately
A ≈ 50 cm2. Consequently the Reynolds number
is large enough that the air resistance is quadratic
(rather than linear) in the speed, FD ≈ 1

2 Aρv̄2,
where ρ = 1.2 kg m−3 is the density of air [17].
We can compare this value to the coefficient of
friction measured in figure 4 by dividing by the
weight of the cart to get FD/mg = 6 × 10−5. This
value is only about 1% of the value of μ found
experimentally. Therefore the air drag on the carts
is on average 100 times weaker than the rolling
friction and is consequently negligible.
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